

Introduces

M6049/M6050 Series **HCMOS/Clipped Sinewave** Precision TCXO/TCVCXO

Features:

- Tight Stability (0.5 ppm)
- Low Phase Noise
- 3.3 V and 5.0 V Versions
- Frequencies from 8 to 52 MHz

Applications:

- Telecommunications such as SERDES / SONET / WiMAX / GSM / GPS / CDMA / Gig-E
- Military communication equipment
- PLL frequency reference
- Test and measurement equipment

MtronPTI Corporate Headquarters 100 Douglas Avenue PO Box 630 Yankton, SD 57078-0630 1-800-762-8800

www.mtronpti.com

Applications Note:

MtronPTI's M6049/M6050 series of 14-pin DIP compatible TCXO and TCVCXO products provide design engineers with a high performance and economically priced frequency control device. Stability as tight as \pm 0.5 ppm is available with excellent aging characteristics. Frequencies from 8 MHz to 52 MHz are available.

The M6049/M6050 series is well suited for a wide range of precise frequency control applications such as test and measurement equipment, wireless base stations, HF, VHF and UHF communications equipment, PLL frequency reference, avionics, and military communications equipment.

The M6049/M6050 series is available with either an HCMOS or clipped sinewave output and an operating voltage of 5 volts or 3.3 volts. The devices can be ordered as a fixed (F) output or with an adjustable frequency (V) output. Precise adjustment utilizing voltage tuning on pin 1 allows the user to easily adjust the device to nominal frequency without the use of a mechanical trimmer internal to the TCXO. This voltage tuning option means that the hermeticity of the package is maintained because there is no need for a trimmer adjustment hole to be placed on the cover of the part. This assures better long term stability, and aging by preventing the ingress of outside atmosphere or moisture into device due to a trimmer access hole being present in the cover. The M6049/M6050 is an excellent replacement for older 14-pin DIP type TCXO/TCVCXO's that utilize a trimmer access hole in the package.

Voltage tuning also allows the designer to configure different digital methods to adjust the frequency of the device electronically without actually requiring human interface with the device.

The low power of the M6049/M6050 devices also makes it a good choice for low power, or "green" applications requiring a high degree of power management.

Product Features

- Tight stability (0.5 ppm)
- 3.3 V and 5.0 V versions
- Wide frequency range 8-52 MHz
- Low phase noise

Product Description

MtronPTI's M6049/M6050 series of TCXO and TCVCXO's provide design engineers with a high stability in a reliable standard 14-DIP through-hole device. Tight stability of \pm 0.5 ppm is achievable utilizing MtronPTI's unique crystal compensation technology. Excellent phase noise (-152 dBc/Hz at 10kHz) is also exhibited by the M6049/M6050 series. HCMOS and clipped sine wave output types are available in frequencies from 8 MHz to 52 MHz.

Product Applications

The M6049/M6050 series is ideally suited for a wide range of applications such as SERDES, SO-NET, WiMAX, GSM, GPS, 3G & 4G, CDMA, Gig-E, and other wireless communications systems. The low power (< 10 mA) make the M6049/M6050 a good choice for use in battery back-up operated systems and other "green" related, power sensitive applications. The low phase noise allows the M6049/ M6050 to be used as a reference oscillator for PLL circuits in RF synthesizers and digital transmission systems.

Product Ordering Information

Ordering Info	ormation						
Product Series M6049 = 3.3 ∨ M6050 = 5.0 ∨	M6049	1	G 	A 	с 	D 	00.0000 MHz
	8: 0°C to +50° °C F: -30°C to +7						
G: ±0.5 ppm J: ±1.0 ppm K: ±2.0 ppm Tuning Range (m	L: ±4.6 ppm E: ±10 ppm						
A: ±5 ppm	C: ±20 ppm X: No Voltage Contr	rol					
C: 45/55% HCM S: Clipped Sinew Package/Lead Co D: 14 Pin Dip Frequency (custo	IOS wave onfigurations ———						

MtronPTI reserves the right to make changes to the product(s) and service(s) described herein without notice. No liability is assumed as a result of their use or application.

Performance Characteristics

	Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions/Notes
	Frequency Range	Fo	8		52	MHz	
	Operating Temperature	T _A	-40		+85	°C	See Ordering Information
	Storage Temperature	T _{STG}	-55		+125	°C	
	Frequency Tolerance @ +25°C		-1.0		+1.0	ppm	For TCXO only
	Frequency Stability						See Ordering Information
	Stability Vs. Reflow		-1.0		+1.0	ppm	
	Frequency Vs. Supply			±0.2		ppm	For 10% supply voltage variation
	Frequency Vs. Load			±0.2		ppm	For 10% load variation
	Aging (First Year)		-1.0		+1.0	ppm	$F_0 \leq 20 \text{ MHz}$
	Aging (First Year)		-2.0		+2.0	ppm	F ₀ ≥ 20 MHz
	Aging (10 Year)		-3.0		+3.0	ppm	$F_0 \leq 20 \text{ MHz}$ (Includes first year)
	Aging (10 Year)		-5.0		+5.0	ppm	$F_0 \ge 20 \text{ MHz}$ (Includes first year)
ß	Supply Voltage (V _S)		-5.0		+5.0	%	See Ordering Information
S S	Supply Current (I _D)			2.2	3.3	mA	HCMOS output at 13 MHz
ati				3.5	5.0	mA	HCMOS output at 26 MHz
ectrical Specifications				6.0	9.2	mA	HCMOS output at 52 MHz
ec	Output Logic Levels	V _{OL}			20	%Vs	$I_{OH}/I_{OL} = \pm 4 \text{ mA}, \text{ Vs} = +3.0 \text{ V}$
ရှိ	(HCMOS)	V _{OH}	80			%Vs	I _{OH} /I _{OL} = ± 4 mA, Vs = +3.0 V
cal	Output Logic Levels	V _{OL}	1.0			V _{pk-pk}	F <u>₀ <</u> 40 MHz
tri	(Clipped Sinewave)	VOH	0.8			V _{pk-pk}	$F_{o} > 40 \text{ MHz}$
	Waveform Symmetry		45		55	%	Ref. to 1/2 V _{S.} HCMOS only
	Rise/Fall Time				8	ns	Ref. 10% to 90%. HCMOS only
	Output Load			15		pF	HCMOS output
	Frequency Adjustment			ee Orderii	ng Informa		Over Control Voltage Range
	Control Voltage Range		0.3		3.0	Volts	For V_S = 3.3 V
			0.5		4.5	Volts	For V_{S} = 5.0 V
	Input Leakage Current		-50		+50	μA	Pin 1
	Input Resistance		100			Kohm	Pin 1
	Linearity				10	%	
	Modulation Bandwidth		10			KHz	Pin 1, 20 MHz, min pull of ±10 ppm
	Phase Noise			-95		dBc/Hz	10 Hz Offset
	(Typical 10 MHz CMOS)			-125		dBc/Hz	100 Hz Offset
	× •••			-145		dBc/Hz	1 KHz Offset
				-152		dBc/Hz	10 KHz Offset
				-155		dBc/Hz	100 kHz Offset
tal							
Environmental	Shock		MIL-STD-202, Method 213, Condition C				100 g
	Vibration	MIL-STD-2		ds 201 & 2	204		10 g from 10 to 2000 Hz
<u>[</u>]	Solderability	EIAJ-STD-	-002				
2	Package	kage 14 Pin Dip RoHS Compliant				RoHS Compliant	
Ш	Ш						

HCMOS Load – see load circuit diagram #2. Clipped Sinewave Load – see load circuit diagram #7.

MtronPTI reserves the right to make changes to the product(s) and service(s) described herein without notice. No liability is assumed as a result of their use or application.

Phase Noise Plot

Output Waveform

MtronPTI reserves the right to make changes to the product(s) and service(s) described herein without notice. No liability is assumed as a result of their use or application.

Product Dimension & Pinout Information

All dimensions in inches (mm).

MtronPTI reserves the right to make changes to the product(s) and service(s) described herein without notice. No liability is assumed as a result of their use or application.

Handling Information

Although protection circuitry has been designed into the M6049/M6050 oscillator, proper precautions should be taken to avoid exposure to electrostatic discharge (ESD) during handling and mounting. MtronPTI utilizes a human-body model (HBM) and a charged-device model (CDM) for ESD-susceptibility testing and protection design evaluation. ESD voltage thresholds are dependent on the circuit parameters used to define the mode. Although no industry-wide standard has been adopted for the CDM, a standard HBM (resistance = 1500 Ω , capacitance = 100 pF) is widely used and therefore can be used for comparison purposes. The HBM ESD threshold presented here was obtained using these circuit parameters.

Model	ESD Threshold, Minimum	Unit		
Human Body	1500*	V		
Charged Device	1500*	V		

* MIL-STD-833D, Method 3015, Class 1

Quality Parameters

Environmental Specifications/Qualification Testing Performed on the M6049/M6050 TCXO/TCVCXO					
Test	Test Method	Test Condition			
Electrical Characteristics	Internal Specification	Per Specification			
Frequency vs. Temperature	Internal Specification	Per Specification			
Mechanical Shock	MIL-STD-202, Method 213, C	100 g, 6 ms			
Vibration	MIL-STD-202, Method 201-204	10 g from 10-2000 Hz			
Thermal Cycle	MIL-STD-883, Method 1010, B	-55 Deg. C to +125 Deg. C, 15 minute Dwell, 10 cycles			
Aging	Internal Specification	168 Hours at 105 Degrees C			
Gross Leak	MIL-STD-202, Method 112	30 Second Immersion			
Fine Leak	MIL-STD-202, Method 112	Must meet 1x10 ^{-∞}			
Solderability	MIL-STD-883, Method 2003	8 Hour Steam Age – Must Exhibit 95% coverage			
Resistance to Solvents	MIL-STD-883, Method 2015	Three 1 minute soaks			
Terminal Pull	MIL-STD-883, Method 2004, A	2 Pounds			
Lead Bend	MIL-STD-883, Method 2004, B1	1 Bending Cycle			
Physical Dimensions	MIL-STD-883, Method 2016	Per Specification			
Internal Visual	Internal Specification	Per Internal Specification			

Part Marking Guide

Line 1: Model Number Line 2: Frequency Line 3: Date Code Line 3: Date Code

MtronPTI reserves the right to make changes to the product(s) and service(s) described herein without notice. No liability is assumed as a result of their use or application.

Maximum Soldering Conditions

Typical solder conditions for through hole crystals and oscillators: Per MIL-STD-202, Method 210 "Resistance to Soldering Heat", Condition C

Wave solder with a solder bath temperature of $260^{\circ}C \pm 5^{\circ}C$ and an exposure time of 10 ± 1 second. Preheat $1-4^{\circ}C/s$ to within $100^{\circ}C$ of solder temperature (25 ± 6 mm/s).

Note: Exceeding these limits may damage the device.

Typical Test Circuits

MtronPTI reserves the right to make changes to the product(s) and service(s) described herein without notice. No liability is assumed as a result of their use or application.

Load Circuit Diagrams

Load Circuit #2 - HCMOS

Load Circuit #7 - Clipped Sinewave TCXO/TCVCXO

Product Revision Table					

Date	Revision	PCN Number	Details of Revision

For custom products or additional specifications contact our sales team at 800.762.8800 (toll free) or 605.665.9321

For more information on this product visit the MtronPTI website at www.mtronpti.com

MtronPTI reserves the right to make changes to the product(s) and service(s) described herein without notice. No liability is assumed as a result of their use or application.

<u>Yankton</u>

PO Box 630 Yankton, SD 57078-0630 USA Phone: 605-665-9321 Toll Free: 800-762-8800 Fax: 605-665-1709 Email: SalesYKT@mtronpti.com

<u>Orlando</u>

2525 Shader Rd Orlando, FL 32804 USA Phone: 407-298-2000 Fax: 407-293-2979 Email: SalesORL@mtronpti.com

Connecticut

755 Main Street Suite 2B, Building 2 Monroe, CT 06470 USA Phone: 800.762.8800 Fax: 203.452.9435 Email: MilSales@mtronpti.com

Santa Clara

1495 Franklin Street Santa Clara, CA 95050 USA Phone: 408.395.0700 Fax: 408.395.8074 Email: SalesCA@mtronpti.com

<u>Europe</u>

The Netherlands Phone: 31-40-368-6818 Fax: 011-31-40-368-3501 Email: SalesEU@mtronpti.com

Asia Pacific

1104 Shanghai Industrial Investment Building 48-62 Hennessy Road Wanchai, Hong Kong, China Phone: 852-2866-8023 Fax: 852-2529-1822 Email: SalesHK@mtronpti.com

MtronPTI reserves the right to make changes to the product(s) and service(s) described herein without notice. No liability is assumed as a result of their use or application.